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Abstract
The description of electron–electron interactions in transport problems is both
analytically and numerically difficult. Here we show that a much simpler
description of electron transport in the presence of interactions can be achieved
in nanoscale systems. In particular, we show that the electron flow in nanoscale
conductors can be described by Navier–Stokes type equations with an effective
electron viscosity, i.e. on a par with the dynamics of a viscous and compressible
classical fluid. By using this hydrodynamic approach we derive the conditions
for the transition from laminar to turbulent flow in nanoscale systems and
discuss possible experimental tests of our predictions.

1. Introduction

The electron liquid is both viscous and compressible; properties which suggest an intriguing
analogy with a classical liquid [1]. This analogy is even more compelling when one recalls that
the time-dependent many-body Schrödinger equation (TDSE) can be cast, quite generally, in
a ‘hydrodynamic’ form in terms of the density and velocity field [2, 3]. In the classical case
one can derive time-dependent equations, called Navier–Stokes equations, for the velocity field
of the fluid as a function of its density, visco-elastic coefficients, pressure and the geometric
confinement [1]. These equations are central to hydrodynamics and describe both laminar and
turbulent regimes. If we could derive similar equations in the quantum case we would have a
powerful tool to investigate a plethora of effects related to electron–electron interactions on a
much simpler level than solving for the many-body Schrödinger equation. Unfortunately, the
derivation of these equations in the quantum case is generally not possible.

In this paper we show that transport in nanoscale conductors satisfies the conditions for
deriving quantum Navier–Stokes equations. This is simply due to the geometric constriction
experienced by electrons flowing in a nanostructure which gives rise to very fast ‘collisional’
processes [4, 5]. In this regime, we show that one can truncate the infinite hierarchy of equations
of motion for the electron stress tensor to second order and thus derive quantum hydrodynamic
equations. With these equations we first re-derive conductance quantization in a quasi-1D non-
viscous, incompressible fluid, thus making the connection between quantum transport and this
hydrodynamic picture clearer. We then predict the conditions for the transition from laminar to
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turbulent flow in quantum point contacts (QPCs) and suggest specific experiments to verify our
predictions.

Let us start from a general many-body Hamiltonian Ĥ = T̂ + Ŵ + V̂ext, where T̂ is the
kinetic term, V̂ext an external potential and

Ŵ = 1
2

∫
dr

∫
dr ′ψ†(r)ψ†(r ′)w(|r − r ′|)ψ(r ′)ψ(r), (1)

where ψ(r) are field operators and w(|r − r ′|) is the Coulomb interaction potential. It is
well known that the TDSE can be equivalently written as two coupled equations of motion for
the single-particle density, n(r, t), and velocity field, v(r, t), as obtained from the Heisenberg
equation of motion for the corresponding operators [2, 3]. The single particle density is defined
in terms of the field operator as n(r, t) = 〈ψ†(r, t)ψ(r, t)〉, while the velocity is given by
v(r, t) = j (r, t)/n(r, t)where the current density is given by j (r, t) = eh̄〈[ψ†(r, t)∇ψ(r, t)−
∇ψ†(r, t)ψ(r, t)]〉/2mi . For clarity we rewrite the Heisenberg equations of motion here
(summation over repeated indices is understood)

Dt n(r, t) + n(r, t)∇v(r, t) = 0 (2)

mn(r, t)Dtv j (r, t) = −∇i Pi, j (r, t)− n(r, t)∇ j Vext(r, t) (3)

where Dt = ∂t + v · ∇ is the convective derivative, m the electron mass and Pi, j (i( j) ≡
ri( j) = x, y, z) is a stress tensor, exactly given by the sum of kinetic and interaction stress
tensors [2, 3]. The interaction tensor is

Wi, j (r, t) = −1

2

∫
dr ′ r ′

i r
′
j

|r ′|
∂w(|r ′|)
∂|r ′|

∫ 1

0
dλ G2(r + λr ′, r − (1 − λ)r ′) (4)

where G2(r, r ′) = 〈ψ†(r)n̂(r ′)ψ(r)〉 is the two-particle density matrix and λ is a parameter
that defines the geodesic which connects two interacting particles [3]. As mentioned above,
equation (3) has an appealing ‘hydrodynamic’ form where all many-body information is
included in the stress tensor Pi, j . In order to solve (3) one proceeds by calculating an equation
of motion for G2, which can be derived from the Heisenberg equation of motion of the particle
creation and destruction operators. However, this equation of motion contains the three-particle
density matrix. In turn, the equation of motion for the three-particle density matrix contains
the four-particle density matrix and so forth, thus generating an infinite hierarchy of nested
equations, making the problem practically unsolvable [2, 3].

2. Quantum Navier–Stokes equations

We show here that in the case of electrical transport in nanoscale systems we can instead close
this set of equations. We proceed as follows. First, let us derive the dependence of the stress
tensor Pi, j on the rate at which the system reaches a quasi-steady state. We can obtain this
dependence from the quantum kinetic equations for the non-equilibrium distribution function
f (r, p, t) (p is the momentum), which can be derived from the TDSE equation with standard
techniques [6]1 in a co-moving (Lagrangian) reference frame moving with velocity v(r, t) [7]

I [ f ] = Dt f (r, p, t)+ p

m
∇ f (r, p, t)+ e∇ϕ ∂ f (r, p, t)

∂p
− p · ∇v ∂ f (r, p, t)

∂p

− m Dtv
∂ f (r, p, t)

∂p
(5)

1 Clearly, for the definition of local equilibrium distribution to be valid any length scale entering the problem has to
be larger than the system Fermi wavelength.
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where I is the usual collisional integral [6] and ϕ is the sum of the external potential and the
Hartree part of the interaction potential. The collisional integral contains two terms, one elastic
and the other inelastic. In what follows, it is important to realize that both terms can drive the
system toward a local equilibrium configuration.

The first two moments of the distribution give the density n(r, t) = ∑
p f (p, r, t) and

the condition
∑

p p f (p, r, t) = 0. The two-particle stress tensor is related to the distribution
function as Pi, j = ∑

p pi p j f (p, r, t)/m. Similarly, higher order moments of the distribution
function produce higher order stress tensors. Introducing these moments into (5) and comparing
with (3) we can write the stress tensor in terms of the collisional integral I according to the
equation of motion
1

m

∫
dp I [ f ]pi p j = Dt Pi, j + Pi, j ∇ · v + Pi,k∇kv j + Pk, j ∇kvi + ∇k P(3)

i, j,k, (6)

where P(3) is the three-particle stress tensor. By writing the equation of motion for P(3)

we would again get an infinite hierarchy of equations. It is interesting to point out that the
theorems of time-dependent density-functional theory establish that the stress tensor Pi, j is a
universal functional of the velocity and density only (see, for example, [8] or [9]). This implies
that the hierarchy of equations for the moments of the distribution function can be formally
closed to all orders in the electron–electron interaction. However, we note that P(3) enters into
equation (6) only through its spatial derivative. If the latter is small then the hierarchy can
be truncated [7]. From (6) we easily see that this derivative is small compared to the other
terms whenever γ = u/(L max(ω, νc)) � 1. Here u is the average electron velocity, L is the
length of inhomogeneities of the liquid that give rise to scattering among three particles, ω is
the system’s proper frequency and νc is the collision rate. The parameter 1/L enters through
the spatial derivative of P(3), ω from the frequency dependence of the interactions (in the DC
limit of interest here ω → 0) and νc through the collisional integral I [ f ] ∝ −νc( f − f0),
where f0 is the equilibrium Fermi distribution. This derivative is indeed small for transport
in nanostructures: When electrons move into a nanojunction they adapt to the given junction
geometry at a fast rate, and produce a quasi-steady state and local equilibrium distributions
even in the absence of electron interactions [4, 5]. This ‘relaxation’ mechanism occurs roughly
at a rate νc = (	t)−1 ∼ (h̄/	E)−1, where	E is the typical energy spacing of lateral modes in
the junction. For a nanojunction of width w we have 	E ∼ π2h̄2/mw2 and 	t ∼ mw2/π2h̄.
If w = 1 nm, νc is of the order of 1015 Hz, i.e. orders of magnitude faster than typical electron–
electron or electron–phonon scattering rates. The condition γ = u/(L max(ω, νc)) � 1 thus
requires the length of inhomogeneities L � 1 nm, which is easily satisfied in nanostructures.
Note instead that in mesoscopic structures this condition is not necessarily satisfied. In that
case, the dominant relaxation rate νc is given by inelastic effects, i.e. it is of the order of THz,
so that for typical lengths of mesoscopic systems, γ ≈ 1 in the DC limit. Nonetheless, the
above condition could still be valid for high-frequency excitations, like plasmons, and/or very
low densities, so that stress tensors of order higher than two are negligible.

Neglecting ∇k P(3)
i, j,k in (6) we can thus derive a form for Pi, j . Let us write quite generally

the stress tensor Pi, j as Pi, j = δi, j P − πi, j , where the diagonal part gives the pressure of the
liquid, and πi, j is a traceless tensor that describes the shear effect on the liquid. From (6) we
thus find that the tensor πi, j can be written as (in d dimensions, d > 1)

πi, j = η

(
∇iv j + ∇ jvi − 2

d
δi, j∇kvk

)
(7)

where η is a real coefficient that is a functional of the density [7]. We point out that (7) is in
fact a particular case of a general stress tensor with memory effects taken into account [10–12].
In our derivation this is the first non-trivial term of an expansion of the stress tensor in terms of
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the density and velocity field. Consequently the Navier–Stokes stress tensor in (7) can be seen
as the first-order (non-trivial) contribution to the exact stress tensor of the electron liquid (see
also [3, 12, 11]).

Using this stress tensor we finally get from (3) the generalized Navier–Stokes equations
for the electron liquid in nanoscale systems

Dt n(r, t) = −n(r, t)∇ · v(r, t),

mn(r, t)Dtvi (r, t) = −∇i P(r, t) + ∇ jπi, j (r, t)− n(r, t)∇i Vext(r, t).
(8)

Equations (8) are formally equivalent to their classical counterpart [1] and thus also describe
nonlinear solutions, i.e. the possibility of obtaining turbulence of the electron liquid in its
normal state. In the examples that follow, we will consider only the case in which the liquid is
incompressible so that the viscoelastic coefficients are spatially uniform: this approximation
is practically satisfied in metallic QPCs but needs to be relaxed in the case of QPCs with
organic/metallic interfaces (see e.g. [13]). In addition, for this case the Hartree potential is
constant and its spatial derivative is thus zero. Therefore, equations (8) reduce to the Navier–
Stokes equations for the density and velocity of a viscous but incompressible electron liquid

Dt n(r, t) = 0,

∇ · v(r, t) = 0,
mn(r, t)Dtvi (r, t) = −∇i P(r, t) + η∇2vi (r, t)− n(r, t)∇i Vext(r, t).

(9)

3. Conductance quantization from hydrodynamics

Let us first show that we can derive from (9) the quantized conductance of an ideal (η = 0)
quasi-1D liquid. We consider the electron liquid adiabatically connected to two reservoirs,
and we call vL(R) and μL(R) the velocity and chemical potential, respectively, in the left (right)
reservoir, with μL − μR = eVbias. From (9) we then derive the Bernoulli equation that states
the conservation of energy

v2
L

2
+ hL + μL

m
= v2

R

2
+ hR + μR

m
(10)

where hL(R) is the enthalpy of the left (right) leads2. Since we assume the fluid is incompressible
hL = hR. By defining the flow velocity v = (vR + vL)/2 and the co-moving Fermi velocity3

vF = (vL − vR)/2 we get from (10) the relation 2mvvF = eVbias. By definition, the current
is given by I = env so that, by using the 1D density of states, I = emvvF/π h̄ = e2Vbias/h,
which, in the linear regime, gives the quantized conductance (per spin) G0 = I/Vbias = e2/h.
If we assume that only a fraction T of electrons is transmitted due to the presence of a barrier in
the liquid, we can argue that, in linear response, the current is an equal fraction of the current in
the absence of the barrier, i.e. I = envT . The conductance is thus G = T e2/h in accordance
with the Landauer two-terminal result [14]. Corrections to this conductance in the presence
of viscosity in 3D have been estimated in [13] and were found to depend non-linearly on the
gradient of the electron density. Corrections to this conductance have been experimentally
observed and justified with a hydrodynamical model where the conductance depends on the
physical properties of the electron flow [15].

2 To derive equation (10) one makes use of the relation v∇ · v = ∇v2/2 − v × (∇ × v) by projection of the equation
of motion on the tangent to the current flow. The enthalpy is defined as h = P/n [1]. In the 1D case ∇ × v ≡ 0 and
h(n) = (π h̄n)2/2m2.
3 vF is the Fermi velocity in the reference frame moving with velocity (vR + vL)/2. Obviously the Bernoulli equation
is invariant under any Galilean transformation.
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Figure 1. Critical Re number as a function of the angle β of the geometry represented in the inset
(b). Inset (a) is a schematic of an adiabatic constriction.

(This figure is in colour only in the electronic version)

4. Turbulence

We know that the time-independent solutions of the Navier–Stokes equations (8) or (9) can
describe many different regimes, with the non-linear (turbulent) regime generally favoured with
respect to the laminar one. In fluid mechanics, in order to identify these regimes, it is customary
to define a key quantity, the Reynolds number Re, as the only non-dimensional quantity that
can be constructed out of the physical parameters of the system, like the density, the viscosity
η, etc [1]. In the quantum case we follow a similar convention. For instance in 2D we define
Re as Re = Q/η = m I/eη, where Q is the total mass current and I is the average total
electrical current. For small Re the stable (and stationary) flow is usually laminar while for
large Re the flow is turbulent [1]. In the latter case, one should then observe a local velocity
field which varies in space in an irregular way, and whose pattern is very sensitive to the initial
conditions.

4.1. Adiabatic QPCs

Let us apply these concepts to the transition between laminar and turbulent flow in QPCs.
The microscopic geometry of these structures is quite complicated so that analytical solutions
to (9) cannot generally be found. However, for an adiabatic 2D constriction, the self-consistent
confining electron potential which enters (9) can be approximated with the simple form
y = k

√|x | − δ where k > 0 is a parameter that controls the rate at which the constriction
opens up and δ > 0 is the opening of the constriction (see inset (a) of figure 1). We assume
electrons either originate from, or enter into, the region {y = 0, x = [0, δ]} of that potential
to resurface on the opposite side of the structure. We know from classical hydrodynamics that,
for any constriction, turbulent flow may exist only on the side where the constriction acts as
a source of electrons [1]. We will therefore discuss only this side. We are interested here in
the case of large k, i.e. the true adiabatic limit. Since we are dealing with a viscous liquid we
assume a no-slip condition at the boundary, i.e. at the boundary the velocity component parallel
to the boundary is zero. This condition can be relaxed by assuming that the velocity be finite
at the boundary: the conclusions would be unchanged. We want to point out, however, that due
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to the small viscosity of the electron liquid the effective boundary conditions on the electron
liquid do not affect its bulk motion considerably.

The analytical stationary solution of (9) with these boundary conditions is not known.
However, one can find an approximate solution by applying the transformation x = p,
y = √

kq that maps y = k
√|x | − δ into q = √

k(|p| − δ), q � 0 and transforms (9)
in a new set of equations where the parameter 1/k appears explicitly. We can then expand
this equation in powers of 1/k. The zeroth-order solution has the form vp(p, q) = 0,
vq(p, q) = αq1/2(p2 − δ2) where vp(q) is the p(q) component of the velocity in the p − q
plane and α is an arbitrary constant fixed by the requirement that a certain amount of charge
is flowing through the system. If we transform back to the x–y plane we see that the zeroth-
order solution is given by vx (x, y) = 0, vy(x, y) = α(x2 − δ2), i.e. we have obtained the
classical Poiseuille flow [1]. It is well known that the Poiseuille flow is stable against small
perturbation for almost all Re; the Poiseuille flow is laminar up to Re � 2 × 104. This flow
is linearly stable for any Re, but is unstable for non-linear perturbations at large Re: turbulent
flow can be observed if, for example, one could force a large enough current4. Since for an
adiabatic constriction 1/k ∼ 0 (i.e. at any given point the system is arbitrarily close to a pipe),
we conclude that in an adiabatic QPC the flow is laminar for almost any value of Re. We note
that compressibility of the liquid may instead provide a lower critical Re to observe turbulence.

4.2. Non-adiabatic QPCs

Let us now look at a case where the constriction is non-adiabatic. A simple non-adiabatic
potential for which an analytical solution exists is y = k|x | (see figure 1(b)). Microscopically,
the point x, y = 0 could be, for example, a molecule sandwiched between two bulk electrodes
with current flowing from one electrode to the other (see, e.g., [16]). We are interested here in
the dynamics close to (but away from) this point. The present problem could also be solved by
assuming a finite opening of the potential at the origin, i.e. a potential of the form y = k(|x |−δ)
(δ > 0). Our conclusions would be unaffected by this finite opening. In the case of the
system in figure 1(b) we know there is a critical Re number, Rcr, determined by the angle
tan(β/2) = 1/k, above which the laminar flow is unstable. A simple calculation gives the
implicit relation between the angle β and Rcr [1]

β(s) =
√

1 − 2s2 K (s2) (11)

Rcr(s)

6
= −1 − s2

s2
β(s)+

√
1 − 2s2

s2
E(s2) (12)

where K and E are elliptic functions and 0 < s < 1 is an arbitrary parameter. This critical Re
is plotted in figure 1 as a function of the angle β and separates the phase space in two regions:
laminar for Re < Rcr and turbulent for Re > Rcr. Equation (12) has again been derived with
the no-slip condition at the boundary. A finite velocity at the boundary (or even a larger velocity
at the boundary than at the centre of the junction) would further reduce Rcr for any β , i.e. it
would make the laminar solution even more unstable. We can thus conclude that turbulence can
be observed in this case. Recently the current distribution for a two-dimensional electron gas
(2DEG) QPC has been measured [17]. An irregular time-independent pattern has been observed
and explained by the presence of impurities in the system. We suggest that turbulent effects
could be observed in similar experiments on the 2DEG if non-adiabaticity is introduced, e.g. by

4 A stability analysis of the solution at large Re shows that the terms of high order appear to be important, and one
cannot consider only linear perturbations (i.e. proportional to the field itself). Assuming non-linear perturbations, one
can then show that the Poiseuille flow is unstable for an arbitrary (but small) perturbation. This is different from the
usual linear perturbation case where the system is stable for any small linear perturbation.
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asymmetric electrodes that would generate a potential of the type represented in figure 1(b). In
this case we can predict the dimension λ0 of the smallest observable eddies in the turbulent
regime. A simple dimensional analysis gives [1] λ0 ∼ l (Rcr/R)3/4 = l (Icr/I )3/4, where
Icr is the critical current, i.e. the current which, from (12), gives Rcr, and l the linear size
of the device. We easily see that λ0 decreases rapidly with increasing β . The viscosity η
can be evaluated through a perturbation theory on the 2D electron liquid [10]. For a 2DEG
in a GaAs heterostructure (m = 0.067me) with a sheet density of n � 1015 m−2 we have
η/h̄n � 0.05 [10]5. For a typical current of 1 μA, Re = 145. We then expect that a turbulent
flow is developed for any angle larger than β ∼ π/10. For instance, for β = π/2 (Rcr ∼ 10
from figure 1), by assuming a length l of a typical device of about 1μm, we evaluate the typical
dimension of the smallest eddies to be λ0 � 250 nm. Our predictions should thus be readily
verifiable experimentally.

We finally conclude by noting that the geometry of nanoscale structures, like for example a
molecule between bulk electrodes, is actually closer to a conical structure for which the electron
liquid is turbulent for relatively small Re [18]. The formation of eddies in proximity to
an atomic or molecular junction is thus much more likely to occur than in the 2DEG case.
Moreover, we expect that the finite compressibility of the electron liquid will favour the
appearance of turbulent flow.
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